A SCIENCE ROADMAP FOR AGRICULTURE

Tom Helms (ED-SR) Richard Jones (UFL) Eric Young (NCSU)

Science Roadmap Preparation

Developed by the ESCOP Science Roadmap Task Force

Objectives:

Plot future research opportunities of science-for-agriculture
 More carefully decide research directions and institutional investments, especially when developing goods and services using public funds

Task Force

24 scholars, representing diverse disciplines and geographic areas
 Charged by ESCOP to look forward 10 to 20 years
 Chart the major directions of agricultural science

Effort included:

Prioritizing stakeholder needs

- Determining scientific feasibility using current methods and tools
- Predicting positive impacts of successful research outcomes

 Setting forth seven Challenge Areas, each with four Objectives

Seven Challenge Areas

- Develop new and more competitive crop products and new uses for diverse crops and novel plant species.
- Develop new products and new uses for animals.
- Reduce the risks of local and global climatic change on food, fiber, and fuel production.

Seven Challenge Areas (cont.)

- Provide the information and knowledge needed to further improve environmental stewardship.
- Improve the economic return to agricultural producers.
- Strengthen our communities and families.
- Ensure improved food safety and health through agricultural and food systems.

Roadmap will:

 Assist decision-makers and advocates for the research and education system
 Help mobilize and plan the allocation of resources for future program areas

Caveats

- Not a comprehensive description of everything to be accomplished in agricultural research
- Current agricultural research agenda must be continued into the future
- Maintenance research must be sustained to protect past gains
- Basic research must be supported if agriculture is to be well served by science

Analysis of Current Scientific Capacity and Estimates of Future Needs

Developed by the ESCOP Planning Committee

Objectives:

 Identify appropriate mix of expertise required to meet challenges
 Pursue federal budget increases to obtaining that expertise

Methods:

 Estimated current effort on each challenge/ objective using CRIS's SY & FOS database Requested 45 directors in 1862 & 1890 institutions to estimate appropriate mix of FOS's to address each challenge/objective 22 directors responded, representing all regions and range of rural & urban areas

Methods (cont.):

Converted estimates to % of objective total to normalize for total SY's
Calculated mean, maximum, minimum & standard deviation for each FOS
Calculated challenge/objective totals using SY estimates

Results:

 Total additional SY's needed is 5179 73% increase over current total of 7064 Critical needs in molecular biology, nutrition & metabolism, engineering, economics, genetics & breeding, and sociology New expertise in bioethics, biosystems modeling, logistics and transportation

Federal Budget Requests and Justifications

Developed by the ESCOP Budget and Legislative Committee

Cost Analysis FOS's grouped into 6 areas: Biological Sciences Nutrition / Epidemiology Ecology / Environmental Sciences Physical Sciences Engineering / Earth Sciences Social Sciences CRIS expenditure data compiled for each

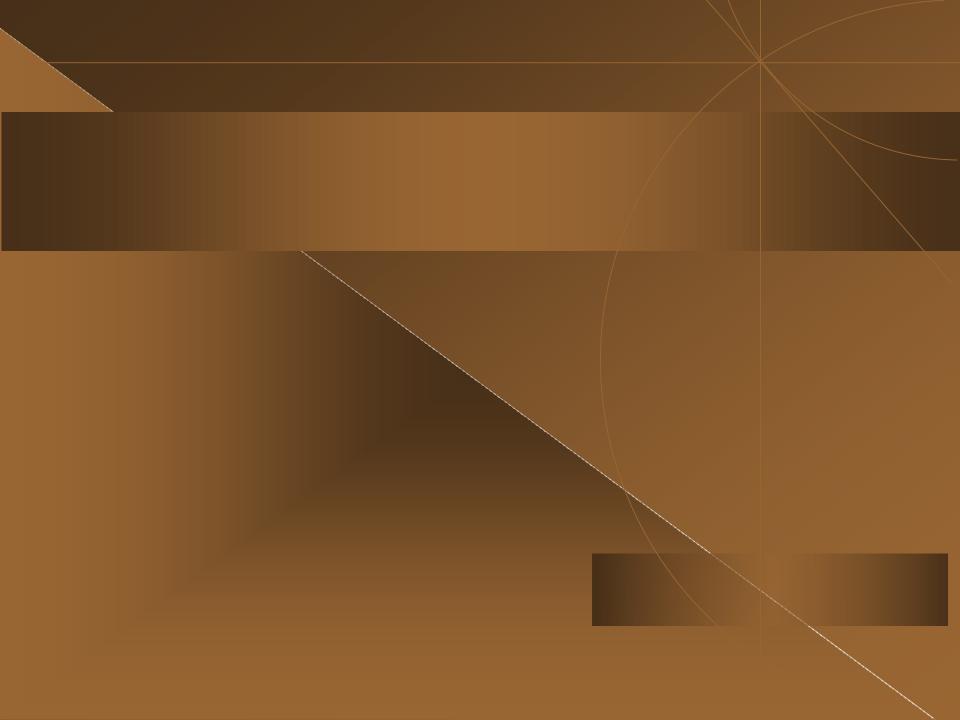
Cost of FOS's (\$000/SY, % Fed, % State)

 Biological Sciences Nutrition/Epidemiology Ecology/Environ Sci Physical Sciences **Engineering/Earth Sci** Social Sciences Average Cost

\$469	38%	35%
\$507	33%	42%
\$333	17%	52%
\$386	23%	51%
\$394	17%	55%
<u>\$337</u>	<u>24%</u>	<u>52%</u>
\$404	25%	48%

Cost of Additional SY Needs

Total cost for 5179 is ~\$2.104 billion
 30% from federal ~\$625 M
 43% from state ~\$921 M
 27% from other ~\$558 M


Highest FOS's

Molecular Biology
Nutrition/Metabolism
Engineering
Economics
Genetics/Breeding
Biochem/Biophysics

\$202 M \$170 M \$150 M \$146 M \$136 M \$136 M

Competitive Grants Program Needs

Increase needed to fund all high quality proposals
NIH
NSF
67%
\$1,000 M
USDA-NRI
187%
\$206 M
\$468 M

